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Gerrymandering is the process of drawing electoral district maps in order to manipulate the outcomes of

elections. Partisan gerrymandering occurs when political parties use this practice to gain an advantage.

Increasingly, computers are involved in both drawing biased, partisan districts and in attempts to measure and

regulate this practice. Several of the most high-profile proposals to measure partisan gerrymandering involve

the use of past voting data. Prior work primarily studies the ability of these metrics to detect gerrymandering.

However, it does not account for how legislation based on the metrics could affect voter behavior or be

circumvented via strategic voting. We show that even in a two-party election, using past voting data can

affect strategyproofness. We further focus on the proposal to ban “outlier maps,” which appear biased toward

a particular party when compared to a random sampling of legal maps. We introduce a game which models

the iterative sequence of voting and redrawing districts under the restriction that outlier maps are forbidden.

Using this game, we illustrate strategies for a majority party to increase its seat count by voting strategically.

This leads to a heuristic for gaming the system when outliers are banned, which we explore experimentally.

Applying a version of our heuristic to past North Carolina voting data shows that these strategies can be

found for real states under some stricter assumptions. Finally, we address some questions from the recent US

Supreme Court case, Rucho v. Common Cause, that relate to our model.
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1 INTRODUCTION
Computer algorithms and automated systems have become crucial players in the game of drawing

and evaluating US electoral districts. Governments have increasingly utilized software to draw

districts that influence the outcomes of elections (e.g., to favor a particular political party, incum-

bent politician, or racial group). Conversely, academics and enthusiastic citizens have proposed

algorithms that purport to be fair alternatives [16, 23, 26], a familiar promise of technology that
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does not always hold true even with the best of intentions. More recently, major US court cases

have highlighted computational approaches to evaluate whether a district map is gerrymandered

to favor a particular political party [13–15, 21]. These legal challenges include a Pennsylvania

Supreme Court case which led to the redrawing of congressional districts in that state [3] and a

recent landmark US Supreme court case [4].

At the heart of algorithms claiming to draw fair, unbiased districts or evaluate existing maps, we

find a series of metrics and constraints that attempt to define what makes a district fair, unbiased,

or even legal. Our goal in this work is to illustrate unexplored or under-explored aspects of how

our choice of metrics and constraints can influence voter behavior and how regulations based on

these metrics can be circumvented. In the context of evaluating maps for partisan gerrymandering,

we show that using past voting data to evaluate maps can incentivize strategizing among voters

even in two-party single-member district plurality systems.

In some sense, strategic voting in an election is not inherently bad. The seminal works of [19, 27]

showed that elections with more than two candidates are not strategyproof. We see this play out

regularly in US elections when a voter prefers a third party candidate, but chooses to vote for

their favorite among the two major-party candidates. However, there are some clear negative

effects. First, strategizing reduces the effectiveness of gerrymandering regulations if players can

get around them even for single election cycles. Second, the ability to strategize may not be fairly

distributed, disenfranchising voters who are less able to strategize. The work of [22] describes this

disparate effect in terms of classifiers. In the specific case of redistricting and the strategic act of

gerrymandering itself, a political party with a rural voter base can have more power to gerrymander

in its favor than an opposing party with an urban base [9].

The ruling in the most recent US Supreme Court case on partisan gerrymandering has essentially

left it to states to decide how they will address the issue, if at all [4]. In doing so, state governments

will need to consider the downstream effects of how they choose to measure and regulate partisan

gerrymandering. To that end, we initiate the study of how measuring gerrymandering using past

voter behavior can incentivize strategic voting to circumvent regulations. We show that careful

scrutiny should be given to any measurement which uses past voter behavior to evaluate and affect

the choice of district maps.

2 PROBLEM DESCRIPTION AND DEFINITIONS
In this section, we outline many problems and definitions associated with districting and gerryman-

dering, including proposed methods to measure gerrymandering or draw fairer districts. We begin

with some basic definitions, then introduce the growing role of computer science in combating

gerrymandering. Finally, we summarize recent attempts to evaluate or draw districts. Throughout

the paper, we restrict our discussion to the United States political system, where gerrymandering

has become a highly contentious issue, as a guiding example.

2.1 Basic districting and gerrymandering definitions
In US politics, many representatives in both federal and state governments are elected via single-

member district plurality systems where voters are partitioned into districts which each elect

representatives with a plurality vote. A plurality vote awards a seat in government to the candidate

who has received the most votes even if that candidate has not received a majority of the total

votes cast. Election districts may be redrawn every 10 years following a population census. This

ensures that districts respond to population shifts over time and remain reasonably balanced in

terms of the number of voters per district to avoid vote dilution.

Historically, state governments have been charged with drawing new maps, and the party which

holds a majority of seats in a state’s government may control the outcome of this process. More



recently, some states have transitioned to a system where an “independent” commission draws

the maps. Such commissions have been controversial in terms of both how their independence

can be guaranteed and whether they violate the US Constitution which assigns this duty to state

governments. Nevertheless, the US Supreme Court has upheld the right of voters in a state to give

redistricting authority to an independent redistricting commission [1]. The present work mainly

explores models where the party controlling the majority of seats also controls the drawing of

districts subject to some restrictions. However, our results may be useful in understanding how to

regulate independent commissions as well.

The strategy of gerrymandering is to influence the outcome of an election through the process

of drawing districts. This can be done by packing many voters from one group into a single district

where they will cast more votes than needed to win, or cracking voters from that group into

multiple districts where they will cast votes for losing candidates in each district. In both packing

and cracking, the idea is to make the opposing group “waste” as many votes as possible while

making one’s own group waste fewer votes.

The type of gerrymandering depends on the type of groups being targeted and the intended

outcome. Partisan gerrymandering attempts to favor one political party over another. Similarly,

racial gerrymandering attempts to favor one racial group over another. Incumbent gerrymandering
is slightly different in that it creates a bias toward re-electing an incumbent candidate. The primary

focus of this paper is partisan gerrymandering. However, these different types are often entangled

such as when there is a correlation between racial demographics and party membership or when

partisan gerrymandering leads to the creation of “safe districts” where incumbents have an ad-

vantage. In fact, laws that prevent the cracking of racial groups have been used to justify packing

members of a racial group for the apparent purpose of partisan gerrymandering as in Florida’s

famously snake-like District 5.

The space of legal district maps is restricted by a set of (sometimes competing) constraints and

objectives that vary from state-to-state. The most common restrictions are contiguity, community

integrity, population balance, hole-freeness, and compactness.Contiguity simplymeans that districts

should be contiguous spaces although in the more extreme cases, they may only be connected

by narrow paths. Community integrity refers to the objective that districts should avoid splitting

defined communities (e.g. counties, towns, etc.) if possible. However, communities are routinely

split ostensibly to meet other objectives. Population balance is the objective that the number of

voters in each district should be as balanced as possible in order to give roughly the same weight

to each person’s vote. The degree to which population balance is violated can depend on other

considerations such as community integrity, and congressional district population sizes within

a state can vary by as much as 897,080 in Texas District 22 to 713,480 in Texas District 13 [10].

There are also several single-district states where the district size is determined solely by the state

population and may be larger than the national average or smaller districts. Montana’s at-large

district has an estimated population of 1,050,493 compared to one of the smallest districts, Rhode

Island’s District 2 with 520,389 [10]. Hole-freeness states that no district should be completely

surrounded by one other district. Finally, compactness is perhaps the least consistently defined goal

with many possible definitions of compactness existing. These include k-median-like objectives

minimizing the average distance a voter has to travel to a center point in their district and objectives

minimizing ratio of area to perimeter (see Section 2.5 for a discussion of algorithms that use these

objectives).

2.2 Using computer science to combat partisan gerrymandering
There are two main directions where computer science has become involved in combating partisan

gerrymandering: verifying whether a given map is unfairly gerrymandered and drawing fair maps.



Crucial to both directions is the question of how to measure gerrymandering and define fairness in

this context. This is clearly true for a verifier, and an algorithm for drawing districts must have

some notion of where the line is between fair and unfair in order to avoid crossing it.

Unfortunately, it is not simple to measure whether partisan gerrymandering has occurred nor

is it straightforward to say that partisan gerrymandering is “unfair” in the US legal context (e.g.

unconstitutional). While gerrymandering may often seem obvious just by looking at a map, this

so-called “eyeball test” is not robust [17]. It is possible that a strange looking map is actually

subject to the geography of a state with respect to both natural and artificial features that perturb

distances between voters such as mountains or highways. On the other hand, it is also possible for

a reasonable looking map to be gerrymandered. Then, supposing we have some test to show that

a map is gerrymandered, we must further show that the practice we measure violates the law in

some way. In the US legal system, the mere practice of gerrymandering is not illegal even though

the concept of candidates choosing their voters instead of the other way around may violate many

citizen’s sensibilities. For example, the US Supreme Court has ruled that racial gerrymandering is

unconstitutional while incumbent gerrymandering is allowed [5, 6].

2.3 Approaches to measurement
Here, we define and discuss some of themost well-known approaches to measure partisan gerryman-

dering. These include the look test, outlier detection, proportionality, competitiveness, the efficiency

gap, and compactness. Our work focuses primarily on outlier detection and proportionality, but is

also relevant to any measurement approach using past voting data.

One seemingly obvious standard which may use past voting data is proportionality. This is the
idea that the proportion of seats assigned to each party should be close to the proportion of votes

received by each party. However, there are challenges to this standard as well. Drawing a map

which achieves proportional representation is impossible for states like Massachusetts where voters

of the two parties are too evenly distributed [18] or single-district states. More importantly in the

US, courts have rejected proportionality tests. For the sake of analysis and comparison to other tests,

we consider an achievable proportionality concept of maximally proportional maps. A maximally
proportional map is one which comes as close as possible to allocating seats proportionally among

all known maps (given the large search space, we may not know the true most proportional maps).

More central to our work is the recent study of outlier maps. An outlier map is one which is

abnormal by some measure of representation. In this paper, we use the natural measure of seat

count awarded to each party for a map based on past voting data. Thus, a map may be an outlier if

it awards 3 out of 11 total seats to a given party while almost every other legal map awards 4 or 5

seats to that party.

A key challenge in detecting an outlier map is that it is difficult to determine what an average

map is. The space of all possible maps is too large to check each one. This has led to approaches

that aim to approximately randomly sample from the set of all possible legal maps using Markov

Chain Monte Carlo techniques [13, 15, 21]. One can generate thousands of random maps and use

past voting data to determine how many seats each party would win on each map assuming voters

were to vote the same way they have in the past. We can compare a given map to this random

sample to determine if it is an outlier. The seat count measure of representation we consider is

used in [21]. Other works use more fine-grained measures that capture smaller changes in the

distribution of voters to districts [13].

Additional measures which use past voter data include competitiveness and the efficiency gap.

The competitiveness of a district attempts to capture the extent to which it might be won by either of

two parties. The efficiency gap measures the difference in the number of wasted votes between two

parties [28]. Generally speaking, any vote cast for a losing candidate is wasted, and for a winning



candidate, a wasted vote is any vote beyond 50% (or alternatively the minimum needed to win

in some variants). This method was used unsuccessfully in a US Supreme Court case challenging

gerrymandering in the state of Wisconsin [2] and critiques of it can be found in [8, 25]. Nevertheless,

we conjecture that an efficiency gap standard might incentivize participation and truthful voting in

contrast to the outlier detection method discussed here.

Finally, we address measures that explicitly do not take past voting behaviour into account.

These typically involve some mathematical definition of what a good cluster should look like. For

example, a ratio of perimeter to area, average distance from all voters to single meeting point, or

even the average number of neighboring districts. They often arise in the discussion of algorithms

for drawing districts, and we save a closer examination for Section 2.5.

2.4 Redistricting subject to gerrymandering regulations
In this paper, we consider models where humans control the redistricting process (possibly using

any algorithms they please), but they may be restricted by gerrymandering metrics. In particular, we

focus on a model we call themajority party draw model where the political party currently in power

in a state controls the redistricting process. Thus, we assume a biased, partisan agent is drawing

the maps to favor one party over the other. Districts are drawn by the party holding the majority

of seats in order to maximize that party’s utility subject to any constraints. We constrain the

drawing party with the typical restrictions that districts must be contiguous and balanced in terms

of population. In addition, we include a regulation proposed to reign in partisan gerrymandering,

banning outlier maps. This regulation prohibits the drawing of outlier maps with respect to seat

counts awarded to each party based on the votes cast in the most recent previous election.

2.5 Other approaches to drawing districts
While this work primarily studies approaches to measuring gerrymandering and their potential

effects, we briefly discuss the topic of drawing districts as one might argue, “Why not just use one

of the existing tools for drawing fair districts?” We describe two broad lines of work devoted to

drawing districts without partisan gerrymandering and sketch why these existing techniques, by

themselves, may not be sufficient or desirable. We group the techniques by whether or not they

use past voting data.

The first general class of algorithms embraces the natural idea of drawing districts without

considering voting preferences at all. We describe some of these works and then argue why it is

still important to test them for partisan bias.

Many of these proposed tools attempt to optimize some measure of compactness. A k-median-

based algorithm is featured in visualizations of different districting schemes on the website FiveThir-

tyEight [11]. The similar objective of balanced centroidal power diagrams is used in [16]. There

are also methods that focus on simple, achievable objectives like the shortest splitline algorithm

which recursively finds the shortest line dividing the population in half until the desired number of

equally sized districts is found [26].

Although tools in this category are often self-described as unbiased, testing their output for

gerrymandering via unintentional bias (e.g., using measures from Section 2.3) is still needed. In

the classic fairness example of classifiers, we know that sensitive features such as race can be

redundantly encoded in other features even if race itself is omitted from the feature set. Similarly,

party membership (or race) may be encoded in other features of population data that are used by

these algorithms.

In the US, features such as party membership and race are correlated with urban versus rural

residence. Thus, any clustering algorithm which is sensitive to the density of points being clustered

could potentially be biased. For example, a bias based on population density could be present in



algorithms which minimize average distance from voters to a central meeting point such as those

based on the k-median objective or balanced centroidal power diagrams. This is not to diminish

the value of these algorithms or claim that they are biased, but rather to show that they should be

tested for biases. This evaluation requires a measure like those described in Section 2.3 and studied

in our present work.

We note that this concern about hidden bias is not new. Other works have explored the effects of

an urban/rural party split [9, 12] and the following statement expressed by Justice Scalia in [7] was

discussed in [14].

Consider, for example, a legislature that draws district lines with no objectives in

mind except compactness and respect for the lines of political subdivisions. Under that

system, political groups that tend to cluster (as is the case with Democratic voters in

cities) would be systematically affected by what might be called a “natural” packing

effect.

In the second category, are approaches that explicitly use voting data. Some of these use measures

from Section 2.3 to guide the algorithm. An evolutionary algorithm called PEAR uses a combination

of objectives including competitiveness based on past voting data and compactness measured as

4π times the area of a district divided by its perimeter squared [23]. There are also cake cutting

approaches which allow two parties to divide up a state [24]. This is shown to meet a definition

of fairness to the two major parties, but may not be fair to other groups such as third parties,

geographic regions with shared interests (e.g., farming communities), or racial groups. Allowing

the two major parties to collaborate on drawing a map may also lead to undesirable incumbent

gerrymandering as in California in the past [20]. While our work does not directly address these

tools, it implies that they could be susceptible to strategic voting.

2.6 Other related work
Here, we summarize some additional related work on social choice theory and fairness.

The classic Gibbard-Satterthwaite Theorem [19, 27] established that at least one of the following

must hold in ordinal voting systems electing a single candidate.

(1) The system is a dictatorship; one voter chooses a winner.

(2) The are only two candidates.

(3) The system is not strategyproof and inspires tactical voting.

While our result shows strategizing in a two party election with single candidates elected per district,

we note that in our model, a single voter’s strategy can affect the outcomes of multiple elections.

Even though each district elects a single candidate, we show how a vote in one district can affect all

districts in future elections. Thus, our work highlights a situation where the Gibbard-Satterthwaite

Theorem may appear to apply, but surprisingly does not.

In the context of fairness, [22] considered the disparity that results from different groups having

different abilities to strategize. Our work shows how certain regulations can create additional

opportunities for strategic manipulation in voting systems and opens the question of whether

additional disparity results from those regulations. This is relevant in elections where political

parties are scrutinized to determine if they are leveraging such disparities to disenfranchise groups

of voters (e.g., using voter id laws to target communities living in urban areas where drivers’ licenses

are not ubiquitous or restrictions on early voting to target people with less flexible working hours).



3 OUR CONTRIBUTIONS
We illustrate how using past voting data to regulate the drawing of district maps can incentivize

voters to strategize and vote untruthfully. In particular, we show that a single-member district

plurality system under the policy of banning outlier maps with only two parties is not strategyproof.

Under the policy of banning outliers, we show examples of how a party holding the majority

of seats can vote and draw districts strategically to increase the number of seats they win. For

banning outliers, we provide a heuristic for a party controlling the districting process to identify

pure strategies that lead to winning more seats and test this heuristic empirically. Finally, we

use grid graph models to explore questions from the US Supreme Court case Rucho v. Common

Cause [4] relating to outlier maps.

While not the primary pursuit of this work, our observations may also be relevant to the areas of

election security and machine learning. In the case of election security, voter fraud, and tampering

with election results, we essentially reveal a scenario wherein a political party could gain in the

long run by generating votes for the opposing party. Such a scenario may be difficult to detect

if one is assuming that a cheating party would only assign votes to itself. In relation to machine

learning, we can view recent computational efforts to detect gerrymandered maps as classifiers.

Thus, our work explores how these classifiers interact with a broader system.

4 MODELING THE GAME OF VOTING AND REDISTRICTING
We introduce a simple game to model the cycle of drawing districts, voting, redrawing districts,

and voting again. The drawing of districts is constrained by a regulation which uses past voting

data to decide if a district map is legal or not. The goal of the model is to clearly illustrate how a

regulation can incentivize voters to vote strategically rather than truthfully and better understand

how regulations might be circumvented.

In this game, there are two political parties, red and blue, which we denote R and B, respectively.
Voters are vertices in a graph G = (V ,E) with the number of vertices |V | = n and the edge set E
signifying neighboring voters. We define a mapm as a partition of G into k districts. Each district

must be a connected component inG with size equal to n/k (we assume for simplicity that k is odd

and n/k is an odd integer). In this way, we enforce the rules that districts must be contiguous and

perfectly balanced in terms of population. In Sections 5 and 7, we further restrict G to be a grid

graph. Thus, in those sections, each district will be an equal-sized, non-overlapping polyomino as

seen in the maps of 3 × 3 grids in Figure 1.

Each voter v has a true preference for one of the two parties. The set of true preferences for all

voters P ∈ {R,B}n is known to both parties at the start of the game and does not change over the

course of the game. Having true preferences known to the parties captures the fact that parties

may know more about their voters (including how they have influenced them) in comparison to

the regulation which only “sees” how people have voted. Without loss of generality, we assume the

red party holds the majority of seats at the start of the game. We also use qv ∈ {R,B} to denote

the most recent vote by each voter v and let Q ∈ {R,B}n be the known set of votes from the most

recent election. We reiterate that set Q of votes from the previous election is known to both parties

and the regulation at all times.

Finally, we have a regulationψ : m 7→ {leдal ,banned } which determines whether a given map

m is legal to use or banned and cannot be used. For the remainder of this work, we focus on the

regulation of banning outliers. In this case, ψ also takes as input the previous votes Q , set of all
possible mapsM (or a set of maps sampled fromM in Section 8), and a threshold τ ∈ (0, 1]. If the
fraction of maps awarding the same number of seats to the red party asm is less than τ , thenm is



banned. Otherwise, it is legal. In other words,m is a banned outlier if the number of maps awarding

the same number of seats to red asm is less than τ |M |.
At the start of the game, we let Q = P assuming that in a prior election voters cast votes

according to their true preferences. The reason for this choice is two-fold. First, it is the simplest

and easiest to analyze case which still addresses our major question of whether strategic voting

can be incentivized by gerrymandering regulation. Second, this models the adoption of a new

regulation. We can assume that voters have been voting their true preferences in the past and the

game starts at the moment when the regulation is imposed.

The game proceeds in four rounds so that we can observe the effect of a round of voting on

which maps can legally be chosen. The objective of each party in this zero sum game is to win as

many total seats as possible.

Round 1: The majority party (red) draws a mapm subject to a gerrymandering regulationψ . The
voters’ true preferences are used as the past voting data for the purpose of regulating

this first round (i.e., Q = P ).

Round 2: All voters vote simultaneously, but voters of the same party may collude. The votes

are tallied, and each district’s seat is awarded to whichever party won the majority of

votes in that district.

Round 3: The party which won the majority of seats in Round 2 draws a new mapm subject toψ .
However, Q is now the set of votes from Round 2 and this may affectψ .

Round 4: Again, all voters vote simultaneously, but voters of the same party may collude. The

votes are tallied, and each district’s seat is awarded to whichever party won the majority

of votes in that district.

While this game only captures two election cycles, we will show that it is able to reveal an

incentive to vote strategically. Natural extensions to more cycles or more rounds of voting before

redistricting will be addressed briefly in Section 10. We further note that in this short game, we can

assume voters will vote their true preferences in Round 4 since these final votes are only used to

determine the outcome of a single election.

4.1 Simplifying assumptions
Here, we outline and discuss a number of simplifying assumptions in our model and analysis.

Further discussion of these assumptions and related future directions appears in Section 10.

To simplify the analysis of collusion, we assume each party controls all of its voters and chooses

how they will vote. Furthermore, we require each voter to vote for one of the two parties. They do

not have the option to abstain or vote for some third party. Therefore, in our model, a candidate

winning a plurality of votes also wins a majority. To further guarantee clear majorities without

ties, we use an odd number of districts with an odd number of voters in each district.

We consider the utility of a party to be a linear function of seat count. This reduces the space of

strategies to explore since a party cannot gain utility by sacrificing a seat in one round in order

to gain a seat in another round. However, one could also envision a more complex model with a

nonlinear function that captures real world effects. For example, in many cases in the US system,

their is a large added benefit to holding a 2/3rd majority. In a nonlinear model, sacrificing a seat in

one round to win a seat in another could be beneficial.
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Fig. 1. All 10 possible maps of a 3 × 3 grid into 3 contiguous districts of equal size. Blue B’s indicate voters
who prefer the blue party and red R’s indicate voters who prefer the red party. Squares with a crossed-out R
followed by a B represent red party voters who can vote for the blue party in Round 2 in order to make map 1
appear to be a non-outlier map for the next round of drawing districts. Map 1 is the only map which awards
3 seats to the red party under true preferences, making it the favorite map for red, but also an outlier.

We note that in the US system, there are typically multiple elections between the rounds of

redistricting that can occur following each decennial population census. Thus, our abstraction

replaces a series of elections with a single voting round.

5 A SIMPLE EXAMPLE GAME ON A 3 × 3 GRID
To illustrate our game from Section 4 and the effects of regulation, we start by looking at the

regulation of banning outliers applied to a specific set of voter preferences on a 3 × 3 grid with 3

districts of size 3. In this setting, we can clearly visualize an exhaustive set of maps.

A 3 × 3 grid admits 10 maps of 3 districts when contiguity and population balance are the only

restrictions. Figure 1 shows all 10 maps along with a set of true voter preferences and strategies.

The top row of voters prefer the blue party, while the bottom two rows prefer the red party. We

can see plainly in Figure 1 that the red party would prefer the first map which partitions the voters

into three columns. This map cracks the blue party so that red wins all 3 seats and it is the only

map in which red wins 3 seats as opposed to 2.

For this simple example game, we consider the regulation of banning outliers with a threshold

of τ that is strictly greater than 0.1, essentially the smallest meaningful threshold for this graph

(we consider smaller, more realistic values of τ in later sections). Thus, the first map in Figure 1

will be banned with respect to the voters’ true preferences P and therefore banned in Round 1.

Because this is the preferred map for the red party, but it cannot be chosen given the regulationψ
and voting history Q = P , we call map 1 the target map for red. In other words, this is the map that

red would like to draw in Round 3 in order to win an extra seat in the game.

Now, suppose one or more of the red voters were to vote for blue in Round 2 without giving up

a seat in that round. This could make it appear that the first map will award 1 seat to blue in future

elections when in fact the red voters could then vote truthfully to award all seats to red. We may

then ask if blue can respond with its own strategic voting, but in this case red has a pure strategy

for any choice of starting map that blue cannot respond to as stated in Observation 5.1.



Observation 5.1. For any choice of starting map the red party has a pure strategy (illustrated in
Figure 1) which leads to winning 5 seats total over the course of the two voting rounds in the game
defined in Section 4.

Note that in several maps (2, 3, 4, 5, 9, and 10) in Figure 1, red can flip a single voter to blue

in order to make it appear that the middle column district of map 1 will be awarded to blue. In

addition, this will not cause red to lose a seat in Round 2 voting compared to voting true preferences.

To potentially counter this effect, blue could flip its voter in the middle column to red. However,

this would cause blue to lose that voter’s district in Round 2, immediately giving 3 seats to red.

Conversely, in other maps (6, 7, and 8) blue can afford to flip one voter to red without losing a

district and this forces red to flip two voters from two separate districts to guarantee that map 1

will not be an outlier when drawing a map in Round 3. Thus, given any legal starting map (all maps

besides map 1), red can vote strategically to win 5 seats overall in the game, whereas truthful voting

would only yield 4 seats overall. In Section 6, we explore this phenomenon more by establishing a

set of conditions that permit a majority party to strategize in more general settings.

6 CONDITIONS FOR STRATEGIZING AGAINST BANNING OUTLIERS
In the previous section, we saw the existence of a set of preferences which incentivized strategic

voting to gain seats when outlier maps are banned. Now, we define a set of conditions under which

a pure strategy exists for the majority party to gain at least one seat by carefully drawing maps

and influencing its supporters to vote strategically. Taken together these conditions are sufficient

to incentivize strategic voting, but may not be necessary, especially when mixed strategies are

considered.

In order to strategize, the majority party must be able to find two maps, a starting map which it

can legally choose in Round 1 and a target map which awards the party more seats than the starting

map, but is an outlier under true preferences. Additionally, given a starting map and target map, we

identify a set of majority party voters called the shills who will vote for the opposing party in the

first vote of Round 2, but then revert to supporting the majority party in the second vote of Round

4. We also require a set of minority party voters called the accomplices whose truthfull votes in
Round 2, combined with the shills’ fake votes, can be used to construct a district which appears to

favor the minority party while actually favoring the majority party under true preferences. We note

that the accomplices from the minority party are, of course, unwilling accomplices whose votes

will be used against their own party no matter how they vote. The majority party will put them in

the following position. If the accomplices vote truthfully in Round 2, their party will ultimately

lose a seat in Round 4, while if they vote untruthfully in Round 2, their party will immediately lose

a seat in Round 2. Given these definitions, the conditions below are sufficient for the majority party

to strategize.

(1) There exists a starting map which is not an outlier with respect to true preferences.

(2) There exists a target map which awards more seats to the majority party than the starting

map, but is an outlier with respect to true preferences.

(3) There does not exist a non-outlier map which, if chosen in all rounds, awards as many or

more seats than the combination of choosing the starting map followed by the target map

under true preferences.

(4) In the starting map, the shills are in a different district from the accomplices.

(5) In the starting map, the majority party does not lose a seat if the shills all vote for the minority

party.

(6) In the starting map, the minority party will lose a seat if any one of the accomplices votes for

the majority party.



(7) In the target map, the shills are in the same district as the accomplices.

(8) In the target map, the district containing the shills and accomplices will go to the majority

party under true preferences, but appears to go to the minority party if the shills and

accomplices vote for the minority party in the first round.

(9) The target map is not an outlier in Round 3 if the accomplices and all majority party voters

besides the shills vote truthfully in Round 2.

Using these conditions, we can identify opportunities to strategize as described in the next

section.

7 HEURISTIC FOR STRATEGIZING AGAINST BANNING OUTLIERS AND
EXPERIMENTS

Based on the conditions from Section 6, we devise a heuristic for finding pure strategies for the

majority party subject to the regulation of banning outliers. To test this heuristic, we use a grid

graph model with a 5 × 5 grid and 5 districts of size 5.

7.1 The heuristic
We implemented a simple heuristic which takes a set of preferences as input and searches for starting

maps, target maps, accomplices, and shills satisfying the conditions from Section 6. Considering

all potential (starting map, target map) pairs takes at most O (τ |M |2) time since there are O ( |M |)
potential starting maps and only O (τ |M |) possible target maps given that target maps are outliers

by definition. Searching a pair of maps to find shills and accomplices takes O (n) time with the

appropriate preprocessing of each map. Thus, the entire process requires O (nτ |M |2) time per

preference set. However, the practical running time is much faster since we can stop as soon as we

find a satisfying pair of maps.

7.2 Experiment design
We test our heuristic in the scenario of a 60/40 split in the true preferences of voters. Our “state” is

a 5 × 5 grid with 5 districts of size 5. For this grid, we consider all possible sets of true preferences

where the majority party has 15 of 25 total voters (∼3.2 million preference sets). A benefit of

using this simple model is that we can consider all 4,006 contiguous and balanced district maps

in order to identify outliers for a given set of preferences. This divorces the analysis of outlier

regulation policies from the questions of how to sample maps and detect outliers that are the focus

of [13, 15, 21].

Outlier threshold. We choose a threshold τ of 2% for banning outliers. In other words, given a

true preference set P or voting history Q , any particular seat count awarded to the majority in less

than 2% of the 4,006 possible maps is considered an outlier and any maps awarding that many seats

would be banned. Aside from being a “natural looking” threshold, this choice is well-suited to our

scenario. For a large number of true preference sets, the 2% threshold bans maps that award all

5 seats to the majority party (Figure 2). On the other hand, it allows maps that award 4 seats to

the majority party for nearly all true preference sets (Figure 3). Awarding 4 seats to the majority

may be seen as a reasonable deviation from proportionality due to the geography of the voter

population. Allowing this amount of deviation is one way for regulators to be clear that they are

not enforcing proportionality.

During the two district drawing rounds (1 and 3), the majority party is allowed to choose any of

the non-outlier maps. During the voting rounds (2 and 4), both parties’ voters may vote strategically,

but our heuristic draws maps based on pure strategies where either only the majority party has an

incentive to vote strategically or no party votes strategically. For each set of true preferences, we



Fig. 2. The number of preference sets out of 3,268,760 total where a map awarding 5 seats to the majority
party is an outlier according to percentage thresholds (1% - 7%).

Fig. 3. The number of preference sets out of 3,268,760 total where a map awarding 4 seats to the majority
party is an outlier according to percentage thresholds (1% - 6%).

test whether our heuristic can find a strategy to gain more total seats than could be gained through

voting truthfully.

7.3 Experimental results
Figure 4 shows the results of our experiments. We see that for roughly half of the 3,268,760

preference sets, maps awarding all 5 seats to the majority party are not outliers. In those cases, no

strategizing is needed. The majority party can simply pick a map which awards it 5 seats and use

that map for the entire game. However, on most of the remaining preference sets, the majority

party is limited to choosing maps in Round 1 that award fewer than 5 seats under true preferences,

but our heuristic is able to find a pure strategy which leads to winning an additional seat in Round



Fig. 4. Illustrating the ability of our heuristic to find pure strategies on all 3,268,760 preference sets with 15
majority party voters. (4,4) indicates preference sets where non-outlier maps award 4 seats to the majority
party under true preferences and our heuristic is unable to strategize for more seats in the second vote. (4,5)
indicates preference sets where non-outlier maps award 4 seats to the majority party under true preferences
and our heuristic finds a pure strategy to win 5 seats in the second vote. (5,5) indicates preference sets where
non-outlier maps award 5 seats to the majority party under true preferences and thus, there is no benefit to
strategizing. This figure omits 12 preference sets where the best non-outlier map awards only 3 seats under
true preferences and we can strategize to win 4 seats in the second voting round.

4. For fewer then 200,000 preference sets, the best non-outlier map awarded 4 seats and we were not

able to find a strategy. We do not know if any pure or mixed strategies exist for these preference

sets.

8 APPLICATION OF OUR HEURISTIC AND MODEL REAL VOTING DATA
8.1 Background
North Carolina is often highlighted as one of the most gerrymandered states in the nation. In

the 2012 North Carolina congressional election, over half of the total votes went to Democratic

candidates, yet only four of the thirteen congressional representatives were Democrats [21]. In

fact, court cases have struck down North Carolina’s 2012 and 2016 congressional maps for partisan

gerrymandering and a case involving North Carolina’s map recently went all the way to the

Supreme Court in [4]. In one effort to address this issue, the “Beyond Gerrymandering” project

sponsored by the Duke Center for Political Leadership, Innovation, and Service brought together an

independent commission of 10 bipartisan retired judges to redraw North Carolina’s congressional

map without the use of past political data or election results with the intention to generate a more

fair district map. The hypothetical map that was produced as a result of this summit will be referred

to as the judges’ map.

8.2 Our results in brief
In order to lend credence to our model and heuristic, we apply simplified versions to real North

Carolina voter data. In the more restricted model, we find one possible strategy for the Republican

party to circumvent an outlier ban by using the judges’ map as a starting map and the 2016 North

Carolina congressional map as a target map. The changes outlined in the next section make the

problem of finding a strategy much more tractable for the larger, messier real world problem.



However, we also describe how this more restricted model can still inform our understanding of

real scenarios.

8.3 Modified model
We retain concepts of our original game such as banning outliers, a two-party system, and four-

round drawing-voting-drawing-voting cycle, as outlined in Section 4. We treat each of the 2,692

voter tabulation districts (VTDs) in North Carolina [21] as points on a planar graph and districts

as a partition of this graph into connect subgraphs. Each VTD is encoded with Democratic and

Republican votes. Crucially, we modify our original game such that the strategizing is one-sided.

While the majority party can strategize, the minority party must vote truthfully. Thus, this model

prevents the minority party from counter-strategizing. In our previous model, each basic unit was

an equivalent voter. In this case, each basic unit (a VTD) does not carry the same weight and the

number of potential reactionary strategies from the minority party increases dramatically.

While this restricted game captures fewer real scenarios, we highlight two interesting observa-

tions. First, our model is motivated by the idea of a “surprise attack” in which one party decides to

manipulate votes to gain an advantage and the other party either does not expect the attack or

knows, but cannot mobilize a counter strategy. In practice, this surprise attack could even be a

secret attack via hacking electronic voting systems. Second, although the majority party strategy

we find may not be an optimal pure strategy in the original game, it can be used to illustrate the

existence of some mixed strategy in the original game. Thus, it still shows an incentive for strategic

voting on real data in a less restricted game.

8.4 Conditions for strategizing on the modified model
We modify our conditions from Section 6 to account for the inability of the minority party to react.

The shills and accomplices are now groups of voters within VTDs. However, they still perform the

same role as in our original model. Taken together, these conditions are sufficient, but may not

be necessary, for a party to strategize in the modified model of this section. Note that we have

maintained the numbering from Section 6 in the list below to facilitate easier comparison between

the two lists.

(1) There exists a starting map which is not an outlier with respect to true preferences.

(2) There exists a target map which awards more seats to the majority party than the starting

map, but is an outlier with respect to true preferences.

(3) There does not exist a non-outlier map which, if chosen in all rounds, awards as many or

more seats than the combination of choosing the starting map followed by the target map

under true preferences.

(5) In the starting map, the majority party does not lose a seat if the shills all vote for the minority

party.

(7) In the target map, the shills are in the same district as the accomplices.

(8) In the target map, the district containing the shills and accomplices will go to the majority

party under true preferences, but appears to go to the minority party if the shills and

accomplices vote for the minority party in the first round.

(9) The target map is not an outlier in Round 3 if all voters besides the shills vote truthfully in

Round 2.

In comparison to the conditions from Section 6, conditions (4) and (6) are no longer needed and

(9) is slightly relaxed. This is because we are assuming in the modified model that the minority

party accomplices vote truthfully. Thus, we do not need to meet conditions that discourage the

accomplices from strategic voting or account for that possibility.



Fig. 5. Plot of Republican seat distributions of the false voter preferences after all of the Republican votes
in the judges’ map district 9 VTDs have been flipped to Democrat votes. We determined the seat counts of
the false voter preferences on 7319 total maps generated by Monte Carlo Markov Chain that we retrieved
from [21]. We note that under our false voter preferences, the 2016 map awards 9 Republican seats which is
not an outlier for the false preferences. However, the true voter preferences award 10 seats on the 2016 map,
which is an outlier.

8.5 Simplified heuristic
Because there is now an enormous number of possible maps and a large set of voters, we cannot

search exhaustively like our procedures from our grid model. In addition to drastically narrowing

our search space to specific starting (judges’ map) and target (2016 map) maps, we implement

a more targeted heuristic for identifying shills. For the most competitive districts (least margin

between voters of the two parties) in our target map not already won by the majority party, we

obtain the list of VTDs in those districts. We then flip as many majority voters from those VTDs as

possible without losing any districts on the starting map, such that those VTDs entirely consist

of minority votes in Round 2. We then compare the new set of voter preferences on the starting

map and target map within the sampling distribution of maps to make sure neither are outliers. We

perform this procedure on each district in our target map frommost competitive to least competitive

until we find a successful strategy or have exhausted the set of losing districts.

8.6 Experiment design
We note that the judge’s map awards 9 out of 13 seats to the Republican party and is therefore

not an outlier, while the 2016 map awards 10 out of 13 seats to the Republican party and is an

outlier [21]. We test our modified model over North Carolina 2016 House voting data. We set the

judges’ map as our starting map and the 2016 map as our target map. We set the Republican Party

as the majority party and the Democratic Party as the minority party. Voter data, the judges’ map,

the 2016 map, and a sampling distribution of maps were retrieved from the Github provided in [21].

8.7 Results
We find that flipping all of the Republican votes to Democrat votes in VTDs found in district 9 of

the judges’ map causes district 2 of the 2016 map to seem to be a Democratic district without the

Republicans losing any districts in the judges’ map. However, according to the real voting history,

district 2 of the 2016 map is a Republican district. Thus, under the false preference sets, the 2016

map seems to award only 9 seats to the Republicans. From Figure 5, we note that 9 seats is not an

outlier under the flipped voter preferences. This enables the Republican party to draw the 2016



map in Round 3 and secure 10 seats in Round 4. Thus, we have shown the existence of a successful

strategy in our modified model to go from the bipartisan judges’ map to the gerrymandered 2016

map which was shown to be an outlier [21].

9 QUESTIONS RAISED IN RUCHO V. COMMON CAUSE
In this section, we address several questions raised during the recent US Supreme Court case Rucho

v. Common Cause [4]. All of these issues were discussed in the opening oral arguments of that

case. We consider them as they relate to the regulations and models explored in this paper.

9.1 Banning outliers versus the proportional allocation objective
Skeptics of the outliers metric and banning outliers regulation have argued that it is similar to or a

proxy for a proportionality rule. Using basic grid models models, we illustrate where these two

rules diverge in valuing and restricting maps.

First, we note that Justices Alito, Gorsuch, Kavanaugh, and Roberts have asked in some way

whether a rule which includes outlier detection (among other tests) amounts to a proportionality

rule in the oral arguments of [4]. This is not an unreasonable concern. The concept of banning

outliers contains important features which are open to manipulation such as

(1) Which metric do you use to compare maps (e.g., seat count[21] or variance in the proportions

of one party’s voters among the districts [13])?

(2) How do you set the threshold for what kind of map is an outlier?

(3) How do you choose among multiple non-outlier maps which may nevertheless assign more

seats to one party or another?

(4) How do you define the space of legal maps that you are sampling from? In other words, how

closely can your mathematical constraints on what constitutes a legal map approximate the

legal definitions in state constitutions?

We show here that despite these concerns, the concept of banning outliers differs from enforcing

or favoring proportionality in important ways. On our 5×5 grid model, we observe what percentage

of maps award proportional representation for given sets of preferences. Figure 6 captures all

possible preference sets on a 5 × 5 grid with 20 majority voters and 5 minority voters. Figure 7

captures all possible preference sets on a 5 × 5 grid with 15 majority voters and 10 minority voters.

It is clear that the seats awarded by the most proportional map can differ greatly from the most

likely randomly chosen maps that respect the voter geography. In the case of 20 majority voters, we

found that a proportional map was the most likely random map for only 6.9% of the preference sets

and for the case 15 majority voters a proportional map was most likely in only 41.5% of preference

sets. Comparing Figures 6 and 7 also suggests that proportional maps are generally more rare when

the minority party represents a smaller proportion of the population, while proportional maps are

more common for preference sets with more even splits between the parties.

Perhaps the most convincing argument for the difference between outlier detection and propor-

tionality comes in Figure 6. We can see that for many preference sets, proportional maps exist, but

are rare and could be explicitly forbidden under a regulation banning outliers. In other words, for

certain arrangements of voters, proportional maps could actually be outlawed by banning outliers.

9.2 Individual harm
Central to the argument that partisan gerrymandering is unconstitutional is the notion of individual

harm. We may ask if an individual’s vote was diluted by a map based on their political preference.

A line of inquiry in [4] focused on the following situation. Suppose we can show that for a given



Fig. 6. Charting all possible preference sets on a 5 × 5 grid with 20 majority voters and 5 minority voters. We
show the numbers of preference sets in which a given percentage of maps achieves proportional representation.
The large bar on the left at 0% indicates preference sets where no map awarded proportional representation.
The second bar from the left indicates the number of preference sets in which only 1% of maps awarded
proportional representation (i.e. preference sets in which proportion maps exist, but are very rare).

Fig. 7. Charting all possible preference sets on a 5× 5 grid with 15majority voters and 10minority voters. We
show the numbers of preference sets in which a given percentage of maps achieves proportional representation.

individual, most maps place them in a district where their chosen party wins, but the proposed

map is one of a few maps which does not. Can this test be used to show individual harm?

Here, we give evidence of a problem with this test. Suppose there are many such individuals and

no single map is fair to all of them. In this case, no deterministically drawn map could be considered

fair. However, it could still be argued that a randomly drawn map is fair by this standard (this could

trivially be achieved by picking a map uniformly at random from the set of sampled maps).

As evidence of this issue, we consider a 5 × 5 grid where the majority party has 13 voters in a

checkerboard pattern. In this simple example, each voter can be placed in a district where their

party wins in over 64% of maps. However, there is no single map which provides this opportunity

to all 13 of those voters. Under a philosophy that places value on the most likely maps for a given

geography, this raises the question of whether a deterministically drawn district can truly be called

fair.



10 CONCLUSION, RECOMMENDATIONS, AND FUTURE DIRECTIONS
We have shown first and foremost that careful scrutiny should be given to any measurement which

uses past voter behavior to evaluate and affect the choice of electoral district maps. The model we

presented primarily serves to illustrate the basic phenomenon of strategic voting in the presence

of gerrymandering regulation. To better understand this issue, more complex models should be

considered.

One of the most unrealistic assumptions in this work is that a political party is able to totally

control all of its voters. An obvious concern with the current model is whether it is feasible to

organize a large enough group of voters from one party to cast votes for the opposing party in

some, but not all elections on a single ballot. Perhaps the only real analog close to this would be the

hacking scenario in which people’s votes are changed illegally and without their knowledge. Thus, if

we wish to consider the possibility of actual strategic voting in practice, we must modify the model

in some way. A natural extension would be to consider the realistic influence that political parties

do have over a voter’s decision between voting for their preferred party or abstaining. It would

be interesting to model and explore whether parties can distort gerrymandering measurement by

choosing where to spend their limited budgets on “get out the vote” efforts using the power of

modern tools such as targeted advertising.

Other useful directions would be to add noise to the model or change the number rounds. The

total number of rounds as well as the number of voting rounds between redistricting could be

arbitrary. Voter preferences might have some probability to change between rounds. While our

four-round model is sufficient to show a basic incentive to vote strategically, richer behavior might

evolve in a longer process. For example, majority party voters in our model vote truthfully in Round

4 to capitalize on their choice of a favorable map in Round 3. However, minority party voters might

then wish to voter strategically if Round 4 were not the final round.

Regarding the problem of finding strategies to circumvent regulation, the heuristics presented

here were fairly simple and lightweight. It is likely that more sophisticated algorithms and more

computing power could be employed to greater effect especially on real data. As with any problem

in algorithmic game theory there is the two-fold challenge of figuring out what the optimization

problem is as well as how to solve it. We essentially identified one type of strategy and how

to execute it. However, there are likely other approaches, especially when considering different

models.

Finally, it is worth considering how gerrymandering metrics that use past voting data can be less

susceptible to strategizing. We note that a metric which uses voting data from multiple elections

would likely be harder to trick. In the US system in particular, data from senate and gubernatorial

races could be especially useful since the voters within a state are not partitioned into districts for

these elections and that could have a confounding effect on incentives.

ACKNOWLEDGMENTS
The authors wish to thank the anonymous reviewers for useful feedback as well as Jonathan

Mattingly and Alan Frieze for fruitful discussions. Research supported in part by NSF Award

CCF-1749864 and research awards from Adobe, Inc., Amazon, and Google.

REFERENCES
[1] Arizona State Legislature v. Arizona Independent Redistricting Commission, No. 13-1314, 576 U.S. ___ (2015).

[2] Gill v. Whitford, No. 16-1161, 585 U.S. ___ (2018).

[3] League of Women Voters of Pennsylvania v. Commonwealth of Pennsylvania, No. 159 MM (2018).

[4] Rucho v. Common Cause, No. 18-422, 588 U.S. ___ (2019).

[5] Shaw v. Reno, No. 92-357, 509 U.S. 630 (1993).



[6] Thornburg v. Gingles, No. 83-1968, 478 U.S. 30 (1986).

[7] Vieth v. Jubelirer, No. 02-1580, 541 U.S. 267 (2004).

[8] Mira Bernstein and Moon Duchin. 2017. A formula goes to court: Partisan gerrymandering and the efficiency gap.

Notices of the AMS 64, 9 (2017), 1020–1024.
[9] Allan Borodin, Omer Lev, Nisarg Shah, and Tyrone Strangway. 2018. Big city vs. the great outdoors: voter distribution

and how it affects gerrymandering. In Proceedings of the 27th International Joint Conference on Artificial Intelligence.
AAAI Press, 98–104.

[10] United States Census Bureau. 2017. My Congressional District. https://www.census.gov/mycd/. [Online; accessed

15-August-2019].

[11] Aaron Bycoffe, Ella Koeze, David Wasserman, and Julia Wolfe. 2018. The Atlas Of Redistricting. https://projects.

fivethirtyeight.com/redistricting-maps/. [Online; published 25-January-2018; accessed 15-August-2019].

[12] Jowei Chen, Jonathan Rodden, et al. 2013. Unintentional gerrymandering: Political geography and electoral bias in

legislatures. Quarterly Journal of Political Science 8, 3 (2013), 239–269.
[13] Maria Chikina, Alan Frieze, and Wesley Pegden. 2017. Assessing significance in a Markov chain without mixing.

Proceedings of the National Academy of Sciences 114, 11 (2017), 2860–2864. https://doi.org/10.1073/pnas.1617540114

arXiv:https://www.pnas.org/content/114/11/2860.full.pdf

[14] Wendy K Tam Cho. 2019. Technology-Enabled Coin Flips for Judging Partisan Gerrymandering. Southern California
law review 93 (2019).

[15] Wendy K Tam Cho and Yan Y Liu. 2018. Sampling from complicated and unknown distributions: Monte Carlo and

Markov chain Monte Carlo methods for redistricting. Physica A: Statistical Mechanics and its Applications 506 (2018),
170–178.

[16] Vincent Cohen-Addad, Philip N. Klein, and Neal E. Young. 2018. Balanced Centroidal Power Diagrams for Redistricting.

In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’18). ACM, New York, NY, USA, 389–396. https://doi.org/10.1145/3274895.3274979

[17] Moon Duchin. 2018. Geometry v. Gerrymandering. Scientific American 319 (10 2018), 48–53. https://doi.org/10.1038/

scientificamerican1118-48

[18] Moon Duchin, Taissa Gladkova, Eugene Henninger-Voss, Ben Klingensmith, Heather Newman, and Hannah Wheelen.

2018. Locating the representational baseline: Republicans in Massachusetts. arXiv preprint arXiv:1810.09051 (2018).
[19] Allan Gibbard et al. 1973. Manipulation of voting schemes: a general result. Econometrica 41, 4 (1973), 587–601.
[20] Corbett A Grainger. 2010. Redistricting and Polarization: Who Draws the Lines in California? The Journal of Law and

Economics 53, 3 (2010), 545–567.
[21] Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet Bangia, Robert Ravier, and Jonathan C

Mattingly. 2018. Quantifying Gerrymandering in North Carolina. arXiv preprint arXiv:1801.03783 (2018).
[22] Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. 2019. The disparate effects of strategic manipulation. In

Proceedings of the Conference on Fairness, Accountability, and Transparency. ACM, 259–268.

[23] Yan Y. Liu, Wendy K. Tam Cho, and Shaowen Wang. 2016. PEAR: a massively parallel evolutionary computation

approach for political redistricting optimization and analysis. Swarm and Evolutionary Computation 30 (2016), 78 – 92.

https://doi.org/10.1016/j.swevo.2016.04.004

[24] Wesley Pegden, Ariel D Procaccia, and Dingli Yu. 2017. A partisan districting protocol with provably nonpartisan

outcomes. arXiv preprint arXiv:1710.08781 (2017).
[25] Benjamin Plener Cover. 2018. Quantifying partisan gerrymandering: An evaluation of the efficiency gap proposal.

Stan. L. Rev. 70 (2018), 1131.
[26] Ivan Ryan and Warren D. Smith. [n.d.]. Splitline districtings of all 50 states + DC + PR. https://rangevoting.org/SplitLR.

html. [Online; accessed 15-August-2019].

[27] Mark Allen Satterthwaite. 1975. Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems

for voting procedures and social welfare functions. Journal of economic theory 10, 2 (1975), 187–217.

[28] Nicholas Stephanopoulos and Eric McGhee. 2015. Partisan Gerrymandering and the Efficiency Gap. University of
Chicago Law Review 82 (2015), 831.

https://www.census.gov/mycd/
https://projects.fivethirtyeight.com/redistricting-maps/
https://projects.fivethirtyeight.com/redistricting-maps/
https://doi.org/10.1073/pnas.1617540114
http://arxiv.org/abs/https://www.pnas.org/content/114/11/2860.full.pdf
https://doi.org/10.1145/3274895.3274979
https://doi.org/10.1038/scientificamerican1118-48
https://doi.org/10.1038/scientificamerican1118-48
https://doi.org/10.1016/j.swevo.2016.04.004
https://rangevoting.org/SplitLR.html
https://rangevoting.org/SplitLR.html

	Abstract
	1 Introduction
	2 Problem description and definitions
	2.1 Basic districting and gerrymandering definitions
	2.2 Using computer science to combat partisan gerrymandering
	2.3 Approaches to measurement
	2.4 Redistricting subject to gerrymandering regulations
	2.5 Other approaches to drawing districts
	2.6 Other related work

	3 Our contributions
	4 Modeling the game of voting and redistricting
	4.1 Simplifying assumptions

	5 A simple example game on a 3 3 grid
	6 Conditions for strategizing against banning outliers
	7 Heuristic for strategizing against banning outliers and experiments
	7.1 The heuristic
	7.2 Experiment design
	7.3 Experimental results

	8 Application of our heuristic and model real voting data
	8.1 Background
	8.2 Our results in brief
	8.3 Modified model
	8.4 Conditions for strategizing on the modified model
	8.5 Simplified heuristic
	8.6 Experiment design
	8.7 Results

	9 Questions raised in Rucho v. Common Cause
	9.1 Banning outliers versus the proportional allocation objective
	9.2 Individual harm

	10 Conclusion, recommendations, and future directions
	Acknowledgments
	References

