Coloring is Harder than You Think

Brian Brubach

Computer Science PhD Candidate at UMD

Computer Science Theory

- Ask questions about what is even possible
- Sometimes like going back to kindergarten
- Topics include: counting and coloring
- Today I'll show you how to become a millionaire by coloring

Warm Up

- What are the odds that two people living in the state of Maryland have exactly the same number of hairs on their head?

Warm Up

- What are the odds that two people living in the state of Maryland have exactly the same number of hairs on their head?
- No beards! Only hairs on top of head!
- Not including people who shave their heads!

Warm Up

- What are the odds that two people living in the state of Maryland have exactly the same number of hairs on their head?
- No beards! Only hairs on top of head!
- Not including people who shave their heads!
- Less than 200,000 hairs on any human head
- Roughly 6 million people in Maryland

Pigeonhole Principle

- If you have $n+1$ pigeons and n pigeonholes, at least two pigeons will share a hole

Pigeonhole Principle

- If you have $n+1$ pigeons and n pigeonholes, at least two pigeons will share a hole

Pigeonhole Principle

- If you have $n+1$ pigeons and n pigeonholes, at least two pigeons will share a hole

Pigeonhole Principle

- If you have $n+1$ pigeons and n pigeonholes, at least two pigeons will share a hole

Pigeonhole Principle

- If you have $n+1$ pigeons and n pigeonholes, at least two pigeons will share a hole

Pigeonhole Principle

- If you have $n+1$ pigeons and n pigeonholes, at least two pigeons will share a hole

The Map Coloring Problem

- What is the maximum number of colors needed to color any map so that no neighboring countries/states/counties are the same color?
- i.e. how many different crayons do you need to buy to color any map?

One extra rule...

One extra rule... No Alaskas!

- Each country must be contiguous (one connected space)

Color the maps with as few colors as possible

- Neighboring countries can't be the same color
- Corners touching doesn't count as neighboring
- How many colors do you need?

How many colors needed for each? Why?

Draw a map that needs as many colors as possible

- Neighboring countries can't be the same color
- Corners touching doesn't count as neighboring
- No Alaskas
- Don't draw too many countries
- Can you draw a map that requires $3,4,5,6$, or more colors?

History of Map Coloring

- 1852 Francis Guthrie
- Coloring the counties of England
- Noticed he needed four colors, but not more
- Asked: is four enough to color any map or do we need more?

History of Map Coloring

- 1852 Francis Guthrie
- Coloring the counties of England
- Noticed he needed four colors, but not more
- Asked: is four enough to color any map or do we need more?
- 1879 Alfred Kempe proves the Four-Color Theorem
- Only need four colors to color any map

History of Map Coloring

- 1852 Francis Guthrie
- Coloring the counties of England
- Noticed he needed four colors, but not more
- Asked: is four enough to color any map or do we need more?
- 1879 Alfred Kempe proves the Four-Color Theorem
- Only need four colors to color any map
- 1880 Peter Tait finds another proof

History of Map Coloring

- 1852 Francis Guthrie
- Coloring the counties of England
- Noticed he needed four colors, but not more
- Asked: is four enough to color any map or do we need more?
- 1879 Alfred Kempe proves the Four-Color Theorem
- Only need four colors to color any map
- 1880 Peter Tait finds another proof
- 1890 Percy John Heawood shows that Kempe's proof was wrong!

History of Map Coloring

- 1852 Francis Guthrie
- Coloring the counties of England
- Noticed he needed four colors, but not more
- Asked: is four enough to color any map or do we need more?
- 1879 Alfred Kempe proves the Four-Color Theorem
- Only need four colors to color any map
- 1880 Peter Tait finds another proof
- 1890 Percy John Heawood shows that Kempe's proof was wrong!
- 1891 Julius Petersen shows that Tait's proof was wrong!

History of Map Coloring

- 1852 Francis Guthrie
- Coloring the counties of England
- Noticed he needed four colors, but not more
- Asked: is four enough to color any map or do we need more?
- 1879 Alfred Kempe proves the Four-Color Theorem
- Only need four colors to color any map
- 1880 Peter Tait finds another proof
- 1890 Percy John Heawood shows that Kempe's proof was wrong!
- 1891 Julius Petersen shows that Tait's proof was wrong!
- 1976 Kenneth Appel and Wolfgang Haken
- Any map (with no Alaskas) can be colored with four colors (no maps require five colors)
- Checked 1,936 small maps using computer assistance
- Proof is $400+$ pages long (Checked by Dorothea Blostein)

4-coloring of US

4-coloring of US

4-coloring of World

4-coloring of World

Including the ocean

What about maps that only require three colors?

- Some maps (e.g. Australia) only require three colors
- Suppose someone hands you a map and asks, "Can this be colored with three colors or does it need four?"
- What would you do?

What about maps that only require three colors?

- Some maps (e.g. Australia) only require three colors
- Suppose someone hands you a map and asks, "Can this be colored with three colors or does it need four?"
- What would you do?
- Try all possible 3-colorings?

What about maps that only require three colors?

- Some maps (e.g. Australia) only require three colors
- Suppose someone hands you a map and asks, "Can this be colored with three colors or does it need four?"
- What would you do?
- Try all possible 3-colorings?
- There are 3^{n} ways to color an n country map with 3 colors ($3^{13}>1$ million)

What about maps that only require three colors?

- Some maps (e.g. Australia) only require three colors
- Suppose someone hands you a map and asks, "Can this be colored with three colors or does it need four?"
- What would you do?
- Try all possible 3-colorings?
- There are 3^{n} ways to color an n country map with 3 colors ($3^{13}>1$ million)
- The answer is unknown!

Becoming a millionaire by coloring

- Algorithm: simply a method or set of instructions for solving a problem
- E.g. a cake recipe is an algorithm for baking a cake

Becoming a millionaire by coloring

- Algorithm: simply a method or set of instructions for solving a problem
- E.g. a cake recipe is an algorithm for baking a cake
- Suppose you could design algorithm that answers the question, "Can this map be colored with three colors or does it need four?"

Becoming a millionaire by coloring

- Algorithm: simply a method or set of instructions for solving a problem
- E.g. a cake recipe is an algorithm for baking a cake
- Suppose you could design algorithm that answers the question, "Can this map be colored with three colors or does it need four?"
- This would solve one of the seven Millennium Prize Problems which each carry a $\$ 1$ million prize

Becoming a millionaire by coloring

- Algorithm: simply a method or set of instructions for solving a problem
- E.g. a cake recipe is an algorithm for baking a cake
- Suppose you could design algorithm that answers the question, "Can this map be colored with three colors or does it need four?"
- This would solve one of the seven Millennium Prize Problems which each carry a $\$ 1$ million prize
- Coloring is related to the P vs. NP problem
- Only one of the other problems (Poincaré conjecture) has been solved, but they didn't accept the prize money
- Is $\mathrm{P}=\mathrm{NP}$? \rightarrow One of the biggest open problems in computer science
- $P \rightarrow$ the class of problems that a computer can solve efficiently
- Example: Shortest path \rightarrow find the shortest route between two cities
- NP \rightarrow the class of problems where we can efficiently verify a solution
- Example: Traveling Salesperson \rightarrow Is there a route shorter than 1,000 miles that visits every city on a list?
- If you give me a route, I can check it quickly
- By efficient, we mean that the running time is not exponential in the size of the problem
- E.g. taking 3^{n} time to color n countries is not efficient
- The big question \rightarrow If we can verify a solution to a problem quickly, does that imply we can also solve it quickly?

NP-complete

- NP-complete \rightarrow Special class of problems
- Known to be in NP
- Not known if they are in P
- Can all be transformed into each other \rightarrow If you can solve one efficiently, you can solve any of them efficiently
- Contains many fundamental important problems and even Sudoku
- All hard problems for computers to solve
- In practice, we can sometimes solve these problems efficiently with "heuristics"
- Heuristics are essentially algorithms that are not guaranteed to always work
- Can also get approximate solutions

Is $P=N P ?$ What would this mean?

- Most computer scientists believe P is not equal to NP
- Polls conducted by UMD professor Bill Gasarch!
- However, we haven't been able to prove this
- $P=$ NP would imply many problems are much easier to solve than we think
- Downside of $\mathrm{P}=\mathrm{NP} \rightarrow$ our cryptography for secure internet transactions fails
- Upside of $P=N P \rightarrow$ many hard problems solvable from traveling salesperson to protein structure prediction
- Theoretically, could then easily solve the other remaining Millennium Prize Problems

Graph Theory

- Graph \rightarrow set of "vertices" (dots) with "edges" (lines) connecting them
- Graph coloring problem \rightarrow Assign a color to each vertex such that vertices sharing an edge have different colors

Not allowed to be same color!

Reductions: Transforming Problems into Each Other

- Notice that if we can solve graph coloring, then we can solve map coloring

Reductions: Transforming Problems into Each Other

- Notice that if we can solve graph coloring, then we can solve map coloring

Reductions: Transforming Problems into Each Other

- Notice that if we can solve graph coloring, then we can solve map coloring
- What other problems can we solve with graph coloring?

Reductions: Transforming Problems into Each Other

- Notice that if we can solve graph coloring, then we can solve map coloring
- What other problems can we solve with graph coloring?
- Seating charts (your teach has a provably HARD job!)
- Final exam scheduling on the fewest possible days
- Any other NP-complete problem \rightarrow Traveling salesperson, facility location, protein folding, etc.

Takeaways

- There are many problems that we think computers can't solve efficiently
- Can sometimes still solve them in practice using heuristics or approximations
- Heuristic \rightarrow Algorithm that is not guaranteed to work
- Approximation \rightarrow Algorithm that is guaranteed to work, but only gives an approximate solution
- When trying to improve a program, you should make sure that what you're doing is possible
- Many seemingly different problems can be transformed into each other through reductions
- What is P vs NP?
- How hard is coloring?

Thanks!

